Nanoscale and Single-Dot Patterning of Colloidal Quantum Dots
نویسندگان
چکیده
منابع مشابه
Simulation of Direct Pumping of Quantum Dots in a Quantum Dot Laser
In this paper, the nonlinear rate equations governing a quantum dot laser isused to simulate the transient as well as the steady-state behaviors of the laser.Computation results show that the rate equations are capable of simulating true behaviorof a quantum dot laser. Then, the pump rates of the rate equations (which show indirectelectrical pumping of the quantum dots through a wetting layer) ...
متن کاملCombining nanoscale manipulation with macroscale relocation of single quantum dots
We have controllably positioned, with nanometre precision, single CdSe quantum dots referenced to a registration template such that the location of a given nanoparticle on a macroscopic (≈1 cm(2)) sample surface can be repeatedly revisited. The atomically flat sapphire substrate we use is particularly suited to optical measurements of the isolated quantum dots, enabling combined manipulation-sp...
متن کاملColloidal CdSe/ZnS quantum dots as single- photon sources
The fluorescence of colloidal CdSe/ZnS nanocrystals at room temperature exhibits a perfect antibunching under continuous or pulsed excitation. In this paper, we discuss the consequences of fluorescence properties of CdSe nanocrystals on the generation of single photons. In particular,we examine the role of Auger processes in the inhibition of multiexcitonic emission. We also discuss the relatio...
متن کاملEffect of PbS Film Thickness on the Performance of Colloidal Quantum Dot Solar Cells
Colloidal quantum dots offer broad tuning of semiconductor band structure via the quantum size effect. In this paper, we present a detailed investigation on the influence of the thickness of colloidal lead sulfide (PbS) nanocrystals (active layer) to the photovoltaic performance of colloidal quantum dot solar cells. The PbS nanocrystals (QDs) were synthesized in a non-coordinating solvent, 1-oc...
متن کاملNanoscale morphology revealed at the interface between colloidal quantum dots and organic semiconductor films.
The degree of interpenetration at the interface between colloidal quantum dots (QDs) and organic semiconductor molecules commonly employed in hybrid light-emitting devices (QD-LEDs) has been examined using tapping-mode atomic force microscopy. Both phase separation-driven and Contact Printing-enabled QD/semiconductor heterojunction fabrication methodologies lead to significant QD embedment in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nano Letters
سال: 2015
ISSN: 1530-6984,1530-6992
DOI: 10.1021/acs.nanolett.5b03068